Claude spawning scene objects and controlling their transformations and materials, generating blueprints, functions, variables, adding components, running python scripts etc.
A project called become human, where NPCs are OpenAI agentic instances. Built using this plugin.
[!WARNING]
This plugin is still under rapid development.
- Do not use it in production environments. ⚠️
- Do not use it without version control. ⚠️
A stable version will be released soon. 🚀🔥
Every month, hundreds of new AI models are released by various organizations, making it hard to keep up with the latest advancements.
The Unreal Engine Generative AI Support Plugin allows you to focus on game development without worrying about the LLM/GenAI integration layer.
Currently integrating Model Control Protocol (MCP) with Unreal Engine 5.5.
This project aims to build a long-term support (LTS) plugin for various cutting-edge LLM/GenAI models and foster a community around it. It currently includes OpenAI's GPT-4o, Deepseek R1, Claude Sonnet 3.7 and GPT-4o-mini for Unreal Engine 5.1 or higher, with plans to add , real-time APIs, Gemini, MCP, and Grok 3 APIs soon. The plugin will focus exclusively on APIs useful for game development, evals and interactive experiences. All suggestions and contributions are welcome. The plugin can also be used for setting up new evals and ways to compare models in game battlefields.
gpt-4o
, gpt-4o-mini
Model ✅gpt-4.5-preview
Model 🛠️o1-mini
, o1
, o1-pro
Model 🚧o3-mini
Model 🛠️gpt-4o-realtime-preview
gpt-4o-mini-realtime-preview
Model 🛠️claude-3-7-sonnet-latest
Model ✅claude-3-5-sonnet
Model ✅claude-3-5-haiku-latest
Model ✅claude-3-opus-latest
Model ✅grok-3-latest
, grok-3-mini-beta
Model ✅gemini-2.0-flash-lite
, gemini-2.0-flash
gemini-1.5-flash
Model 🚧🤝imagen-3.0-generate-002
Model 🚧deepseek-chat
(DeepSeek-V3) Model ✅deepseek-reasoning-r1
Model ✅deepseek-reasoning-r1
CoT Streaming ❌baidu-chat
Model 🚧Where,
[!NOTE]
There is no need to set the API key for testing the MCP features in Claude app. Anthropic key only needed for Claude API.
Set the environment variable PS_<ORGNAME>
to your API key.
setx PS_<ORGNAME> "your api key"
Run the following command in your terminal, replacing yourkey with your API key.
echo "export PS_<ORGNAME>='yourkey'" >> ~/.zshrc
Update the shell with the new variable:
source ~/.zshrc
PS: Don't forget to restart the Editor and ALSO the connected IDE after setting the environment variable.
Where <ORGNAME>
can be:
PS_OPENAIAPIKEY
, PS_DEEPSEEKAPIKEY
, PS_ANTHROPICAPIKEY
, PS_METAAPIKEY
, PS_GOOGLEAPIKEY
etc.
Storing API keys in packaged builds is a security risk. This is what the OpenAI API documentation says about it:
"Exposing your OpenAI API key in client-side environments like browsers or mobile apps allows malicious users to take that key and make requests on your behalf – which may lead to unexpected charges or compromise of certain account data. Requests should always be routed through your own backend server where you can keep your API key secure."
Read more about it here.
For test builds you can call the GenSecureKey::SetGenAIApiKeyRuntime
either in c++ or blueprints function with your API key in the packaged build.
[!NOTE]
If your project only uses the LLM APIs and not the MCP, you can skip this section.
[!CAUTION]
Discalimer: If you are using the MCP feature of the plugin, it will directly let the Claude Desktop App control your Unreal Engine project. Make sure you are aware of the security risks and only use it in a controlled environment.Please backup your project before using the MCP feature and use version control to track changes.
claude_desktop_config.json
file in Claude Desktop App's installation directory. (might ask claude where its located for your platform!)
The file will look something like this:
{
"mcpServers": {
"unreal-handshake": {
"command": "python",
"args": ["<your_project_directoy_path>/Plugins/GenerativeAISupport/Content/Python/mcp_server.py"],
"env": {
"UNREAL_HOST": "localhost",
"UNREAL_PORT": "9877"
}
}
}
}
.cursor/mcp.json
file in your project directory. The file will look something like this:
{
"mcpServers": {
"unreal-handshake": {
"command": "python",
"args": ["<your_project_directoy_path>/Plugins/GenerativeAISupport/Content/Python/mcp_server.py"],
"env": {
"UNREAL_HOST": "localhost",
"UNREAL_PORT": "9877"
}
}
}
}
pip install mcp[cli]
Add the Plugin Repository as a Submodule in your project's repository.
git submodule add https://github.com/prajwalshettydev/UnrealGenAISupport Plugins/GenerativeAISupport
Regenerate Project Files: Right-click your .uproject file and select Generate Visual Studio project files.
Enable the Plugin in Unreal Editor: Open your project in Unreal Editor. Go to Edit > Plugins. Search for the Plugin in the list and enable it.
For Unreal C++ Projects, include the Plugin's module in your project's Build.cs file:
PrivateDependencyModuleNames.AddRange(new string[] { "GenerativeAISupport" });
Still in development..
Coming soon, for free, in the Unreal Engine Marketplace.
you can pull the latest changes with:
cd Plugins/GenerativeAISupport
git pull origin main
Or update all submodules in the project:
git submodule update --recursive --remote
Still in development..
There is a example Unreal project that already implements the plugin. You can find it here.
Currently the plugin supports Chat and Structured Outputs from OpenAI API. Both for C++ and Blueprints.
Tested models are gpt-4o
, gpt-4o-mini
, gpt-4.5
, o1-mini
, o1
, o3-mini-high
.
void SomeDebugSubsystem::CallGPT(const FString& Prompt,
const TFunction<void(const FString&, const FString&, bool)>& Callback)
{
FGenChatSettings ChatSettings;
ChatSettings.Model = TEXT("gpt-4o-mini");
ChatSettings.MaxTokens = 500;
ChatSettings.Messages.Add(FGenChatMessage{ TEXT("system"), Prompt });
FOnChatCompletionResponse OnComplete = FOnChatCompletionResponse::CreateLambda(
[Callback](const FString& Response, const FString& ErrorMessage, bool bSuccess)
{
Callback(Response, ErrorMessage, bSuccess);
});
UGenOAIChat::SendChatRequest(ChatSettings, OnComplete);
}
Sending a custom schema json directly to function call
FString MySchemaJson = R"({
"type": "object",
"properties": {
"count": {
"type": "integer",
"description": "The total number of users."
},
"users": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": { "type": "string", "description": "The user's name." },
"heading_to": { "type": "string", "description": "The user's destination." }
},
"required": ["name", "role", "age", "heading_to"]
}
}
},
"required": ["count", "users"]
})";
UGenAISchemaService::RequestStructuredOutput(
TEXT("Generate a list of users and their details"),
MySchemaJson,
[](const FString& Response, const FString& Error, bool Success) {
if (Success)
{
UE_LOG(LogTemp, Log, TEXT("Structured Output: %s"), *Response);
}
else
{
UE_LOG(LogTemp, Error, TEXT("Error: %s"), *Error);
}
}
);
Sending a custom schema json from a file
#include "Misc/FileHelper.h"
#include "Misc/Paths.h"
FString SchemaFilePath = FPaths::Combine(
FPaths::ProjectDir(),
TEXT("Source/:ProjectName/Public/AIPrompts/SomeSchema.json")
);
FString MySchemaJson;
if (FFileHelper::LoadFileToString(MySchemaJson, *SchemaFilePath))
{
UGenAISchemaService::RequestStructuredOutput(
TEXT("Generate a list of users and their details"),
MySchemaJson,
[](const FString& Response, const FString& Error, bool Success) {
if (Success)
{
UE_LOG(LogTemp, Log, TEXT("Structured Output: %s"), *Response);
}
else
{
UE_LOG(LogTemp, Error, TEXT("Error: %s"), *Error);
}
}
);
}
Currently the plugin supports Chat and Reasoning from DeepSeek API. Both for C++ and Blueprints. Points to note:
[!WARNING]
While using the R1 reasoning model, make sure the Unreal's HTTP timeouts are not the default values at 30 seconds. As these API calls can take longer than 30 seconds to respond. Simply setting theHttpRequest->SetTimeout(<N Seconds>);
is not enough So the following lines need to be added to your project'sDefaultEngine.ini
file:
[HTTP] HttpConnectionTimeout=180 HttpReceiveTimeout=180
FGenDSeekChatSettings ReasoningSettings;
ReasoningSettings.Model = EDeepSeekModels::Reasoner; // or EDeepSeekModels::Chat for Chat API
ReasoningSettings.MaxTokens = 100;
ReasoningSettings.Messages.Add(FGenChatMessage{TEXT("system"), TEXT("You are a helpful assistant.")});
ReasoningSettings.Messages.Add(FGenChatMessage{TEXT("user"), TEXT("9.11 and 9.8, which is greater?")});
ReasoningSettings.bStreamResponse = false;
UGenDSeekChat::SendChatRequest(
ReasoningSettings,
FOnDSeekChatCompletionResponse::CreateLambda(
[this](const FString& Response, const FString& ErrorMessage, bool bSuccess)
{
if (!UTHelper::IsContextStillValid(this))
{
return;
}
// Log response details regardless of success
UE_LOG(LogTemp, Warning, TEXT("DeepSeek Reasoning Response Received - Success: %d"), bSuccess);
UE_LOG(LogTemp, Warning, TEXT("Response: %s"), *Response);
if (!ErrorMessage.IsEmpty())
{
UE_LOG(LogTemp, Error, TEXT("Error Message: %s"), *ErrorMessage);
}
})
);
Currently the plugin supports Chat from Anthropic API. Both for C++ and Blueprints.
Tested models are claude-3-7-sonnet-latest
, claude-3-5-sonnet
, claude-3-5-haiku-latest
, claude-3-opus-latest
.
// ---- Claude Chat Test ----
FGenClaudeChatSettings ChatSettings;
ChatSettings.Model = EClaudeModels::Claude_3_7_Sonnet; // Use Claude 3.7 Sonnet model
ChatSettings.MaxTokens = 4096;
ChatSettings.Temperature = 0.7f;
ChatSettings.Messages.Add(FGenChatMessage{TEXT("system"), TEXT("You are a helpful assistant.")});
ChatSettings.Messages.Add(FGenChatMessage{TEXT("user"), TEXT("What is the capital of France?")});
UGenClaudeChat::SendChatRequest(
ChatSettings,
FOnClaudeChatCompletionResponse::CreateLambda(
[this](const FString& Response, const FString& ErrorMessage, bool bSuccess)
{
if (!UTHelper::IsContextStillValid(this))
{
return;
}
if (bSuccess)
{
UE_LOG(LogTemp, Warning, TEXT("Claude Chat Response: %s"), *Response);
}
else
{
UE_LOG(LogTemp, Error, TEXT("Claude Chat Error: %s"), *ErrorMessage);
}
})
);
Currently the plugin supports Chat from XAI's Grok 3 API. Both for C++ and Blueprints.
FGenXAIChatSettings ChatSettings;
ChatSettings.Model = TEXT("grok-3-latest");
ChatSettings.Messages.Add(FGenXAIMessage{
TEXT("system"),
TEXT("You are a helpful AI assistant for a game. Please provide concise responses.")
});
ChatSettings.Messages.Add(FGenXAIMessage{TEXT("user"), TEXT("Create a brief description for a forest level in a fantasy game")});
ChatSettings.MaxTokens = 1000;
UGenXAIChat::SendChatRequest(
ChatSettings,
FOnXAIChatCompletionResponse::CreateLambda(
[this](const FString& Response, const FString& ErrorMessage, bool bSuccess)
{
if (!UTHelper::IsContextStillValid(this))
{
return;
}
UE_LOG(LogTemp, Warning, TEXT("XAI Chat response: %s"), *Response);
if (!bSuccess)
{
UE_LOG(LogTemp, Error, TEXT("XAI Chat error: %s"), *ErrorMessage);
}
})
);
This is currently work in progress. The plugin supports various clients like Claude Desktop App, Cursor etc.
That's it! You can now use the MCP features of the plugin.
python <your_project_directoy>/Plugins/GenerativeAISupport/Content/Python/mcp_server.py
Tools -> Run Python Script -> Select the
Plugins/GenerativeAISupport/Content/Python/unreal_socket_server.py
file.
(Still wip)
unreal
python package and setup the IDE's python interpreter for proper intellisense.pip install unreal
More details will be added soon.
More details will be added soon.
If you find UnrealGenAISupport helpful, consider sponsoring me to keep the project going! Click the "Sponsor" button above to contribute.
Seamless access to top MCP servers powering the future of AI integration.