A Model Context Protocol (MCP) server for Ragdoll AI knowledge base queries.
This MCP server provides a simple interface to query Ragdoll AI knowledge bases through the Model Context Protocol. It allows seamless integration with various LLM client applications including Cursor, Windsurf, and Cline.
Clone the repository and install dependencies:
git clone <repository-url>
cd mcp-ragdoll-server
bun install
Set up your environment variables:
export RAGDOLL_API_KEY="your-ragdoll-api-key"
export RAGDOLL_KNOWLEDGE_BASE_ID="your-knowledge-base-id"
For persistent configuration, add these to your .bashrc
, .zshrc
, or create a .env
file in the project root.
Start the server:
bun run index.ts
The simplest way to use this server is via NPX:
npx -y ragdoll-mcp-server
To install the Ragdoll MCP server in Cursor IDE:
mcp.json
with the following configuration:{
"mcpServers": {
"ragdoll-mcp-server": {
"command": "npx",
"args": ["-y", "ragdoll-mcp-server"],
"env": {
"RAGDOLL_API_KEY": "your-ragdoll-api-key",
"RAGDOLL_KNOWLEDGE_BASE_ID": "your-knowledge-base-id"
}
}
}
}
Alternatively, you can run the server locally:
{
"mcpServers": {
"ragdoll-mcp-server": {
"command": "bun",
"args": ["run", "/path/to/mcp-ragdoll-server/index.ts"],
"env": {
"RAGDOLL_API_KEY": "your-ragdoll-api-key",
"RAGDOLL_KNOWLEDGE_BASE_ID": "your-knowledge-base-id"
}
}
}
}
To install the Ragdoll MCP server in Windsurf IDE:
Create or edit your mcp_config.json
file with the following configuration:
{
"mcpServers": {
"ragdoll-mcp-server": {
"command": "npx",
"args": ["-y", "ragdoll-mcp-server"],
"env": {
"RAGDOLL_API_KEY": "your-ragdoll-api-key",
"RAGDOLL_KNOWLEDGE_BASE_ID": "your-knowledge-base-id"
}
}
}
}
To install the Ragdoll MCP server in Cline:
Create or edit your cline_mcp_settings.json
file with the following configuration:
{
"mcpServers": {
"ragdoll-mcp-server": {
"command": "npx",
"args": ["-y", "ragdoll-mcp-server"],
"env": {
"RAGDOLL_API_KEY": "your-ragdoll-api-key",
"RAGDOLL_KNOWLEDGE_BASE_ID": "your-knowledge-base-id"
}
}
}
}
Once connected, you can query your Ragdoll knowledge base with the following parameters:
query
(string, required): The search query to find relevant informationtopK
(number, optional): Number of results to return (1-10)rerank
(boolean, optional): Whether to rerank resultsExample usage in your LLM client:
You can ask questions about your knowledge base content.
This project uses the Model Context Protocol SDK. For more information, refer to the MCP documentation.
For issues or questions about this MCP server, please submit an issue on GitHub.
Seamless access to top MCP servers powering the future of AI integration.