open-swarm
matthewhand/open-swarmUpdated Apr 2009

Remote#autonomous agents#python framework#blueprintsLicense: MIT LicenseLanguage: Python

Open Swarm

Project Logo

Open Swarm is a Python framework for creating, managing, and deploying autonomous agent swarms. It leverages the openai-agents library for core agent functionality and provides a structured way to build complex, multi-agent workflows using Blueprints.

Open Swarm can be used in two primary ways:

  1. As a CLI Utility (swarm-cli): Manage, run, and install blueprints directly on your local machine. Ideal for personal use, testing, and creating standalone agent tools. (Recommended installation: PyPI)
  2. As an API Service (swarm-api): Deploy a web server that exposes your blueprints via an OpenAI-compatible REST API. Ideal for integrations, web UIs, and shared access. (Recommended deployment: Docker)

Core Framework TODO

  • Unified interactive approval mode for all blueprints (core, CLI/API flag, boxed UX)
  • Enhanced ANSI/emoji output for search, analysis, and file ops (core BlueprintUX)
  • Custom spinner/progress messages (core and per-blueprint personality)
  • Persistent session logging/audit trail (core, opt-in per blueprint)
  • Automatic context/project file injection for agent prompts
  • User feedback/correction loop for agent actions
  • API/CLI flag for enabling/disabling advanced UX features
    • Support desktop notifications (--notify)
    • Support attaching image inputs (--image, -i)
    • Support inspecting past sessions via --view, -v
    • Support opening instructions file with --config, -c
    • Support whitelisting sandbox write roots (--writable-root, -w)
    • Support disabling project docs (--no-project-doc)
    • Support full stdout (--full-stdout)
    • Support dangerous auto-approve (--dangerously-auto-approve-everything)
    • Support shell completion subcommand (completion <bash|zsh|fish>)
    • Support full-context mode (--full-context, -f)
  • Security review: command sanitization, safe execution wrappers
  • Documentation: core feature usage, extension points, UX guidelines

Core Concepts

  • Agents: Individual AI units performing specific tasks, powered by LLMs (like GPT-4, Claude, etc.). Built using the openai-agents SDK.
  • Blueprints: Python classes (BlueprintBase subclasses) defining a swarm's structure, agents, coordination logic, and external dependencies (like required environment variables or MCP servers). They act as reusable templates for specific tasks (e.g., code generation, research, data analysis).
  • MCP (Model Context Protocol) Servers: Optional external processes providing specialized capabilities (tools) to agents, such as filesystem access, web browsing, database interaction, or interacting with specific APIs (Slack, Monday.com, etc.). Agents interact with MCP servers via a standardized communication protocol.
  • Configuration (swarm_config.json): A central JSON file defining available LLM profiles (API keys, models) and configurations for MCP servers. Typically managed via swarm-cli in ~/.config/swarm/.
  • swarm-cli: A command-line tool for managing blueprints (adding, listing, running, installing) and the swarm_config.json file. Uses XDG directories for storing blueprints (~/.local/share/swarm/blueprints/) and configuration (~/.config/swarm/).
  • swarm-api: A launcher for the Django/DRF backend that exposes installed blueprints via an OpenAI-compatible REST API (/v1/models, /v1/chat/completions).

Installation

Option 1: Install from PyPI (Recommended for most users)

pip install open-swarm

This will install the swarm-cli and swarm-api command-line tools to your PATH (typically ~/.local/bin/ for user installs).

  • Run swarm-cli --help or swarm-api --help to verify installation.

Option 2: Install from Local Source (for development and testing)

Clone the repository and install in editable mode:

git clone https://github.com/matthewhand/open-swarm.git
cd open-swarm
pip install -e .
  • This makes swarm-cli and swarm-api available from your local copy. Changes to the code are immediately reflected.
  • You can now test your local changes before pushing to PyPI.

Local CLI Usage Example

swarm-cli --help
swarm-api --help

If you do not see the commands in your PATH, ensure ~/.local/bin is in your PATH:

export PATH="$HOME/.local/bin:$PATH"

Configuration Management & Secrets

Open Swarm uses a modern, XDG-compliant config structure:

  • Main config: ~/.config/swarm/swarm_config.json
  • Secrets: ~/.config/swarm/.env
  • Example config: swarm_config.json.example (in project root)

Deploying/Initializing Config

  1. Copy the advanced example config:
cp ./swarm_config.json ~/.config/swarm/swarm_config.json
  1. Copy your .env file:
cp .env ~/.config/swarm/.env

Config Structure (Advanced Example)

Your swarm_config.json can include rich LLM profiles, MCP server definitions, and blueprint metadata. Example:

{
  "llm": {
    "default": {
      "provider": "openai",
      "model": "${LITELLM_MODEL}",
      "base_url": "${LITELLM_BASE_URL}",
      "api_key": "${LITELLM_API_KEY}"
    },
    ...
  },
  "mcpServers": {
    "git": {
      "description": "Provides Git operations via Docker.",
      "command": "docker",
      "args": ["run", "--rm", ...]
    },
    ...
  },
  "blueprints": {
    "defaults": { "max_llm_calls": 10 },
    "MyBlueprint": { "llm_profile": "default" }
  }
}
  • Secrets (like API keys) are always referenced as ${ENV_VAR} in the config and stored in .env.

Editing Config with swarm-cli

  • Use swarm-cli to add/edit/remove/list:
    • LLMs
    • MCP servers
    • Blueprints
  • When prompted for secrets, they are stored in ~/.config/swarm/.env, not in the JSON.

Environment Variables

Open Swarm and its blueprints use a variety of environment variables for configuration, security, and integration with external services. Set these in your shell, .env file, Docker environment, or deployment platform as appropriate.

Core Framework Environment Variables

VariableDescriptionDefault / Required
OPENAI_API_KEYAPI key for OpenAI LLMs (used by agents and blueprints)Required for OpenAI usage
SWARM_API_KEYAPI key for securing API endpoints (swarm-api)Optional (recommended)
LITELLM_BASE_URLOverride base URL for LiteLLM/OpenAI-compatible endpointsOptional
LITELLM_API_KEYAPI key for LiteLLM endpointsOptional
SWARM_CONFIG_PATHPath to the main Swarm config file (swarm_config.json)../swarm_config.json
BLUEPRINT_DIRECTORYDirectory containing blueprint filessrc/swarm/blueprints
DJANGO_SECRET_KEYDjango secret key (for API mode)Auto-generated/dev default
DJANGO_DEBUGEnable Django debug modeTrue
DJANGO_ALLOWED_HOSTSComma-separated allowed hosts for Django APIlocalhost,127.0.0.1
API_AUTH_TOKENToken for authenticating API requestsOptional
DJANGO_LOG_LEVELLog level for Django appINFO
SWARM_LOG_LEVELLog level for Swarm appDEBUG
REDIS_HOSTHost for Redis (if used)localhost
REDIS_PORTPort for Redis (if used)6379
DJANGO_CSRF_TRUSTED_ORIGINSComma-separated trusted origins for CSRF protectionhttp://localhost:8000,...
ENABLE_ADMINEnable admin web interfacefalse
ENABLE_API_AUTHRequire API authenticationtrue

Blueprint/Tool-Specific Variables

  • Some blueprints and MCP tools may require additional env vars (e.g., Google API keys, Slack tokens, etc.).
  • Refer to the blueprint's docstring or config for details.

Usage Example

export OPENAI_API_KEY="sk-..."
export SWARM_API_KEY="..."
export LITELLM_BASE_URL="https://open-litellm.fly.dev/v1"
# ... set other variables as needed

Toolbox Functionality

Open Swarm ships with a growing toolbox of agent and blueprint utilities. All features listed below have robust, passing tests unless marked as WIP (Work In Progress).

Task Scheduler Toolbox

  • Schedule jobs with at:
    • Schedule a shell script or command to run at a specific time (uses the system at command).
    • Test Status: Passing
  • List scheduled at jobs:
    • List all jobs currently scheduled with at.
    • Test Status: Passing
  • Remove at jobs:
    • Remove a scheduled job by its job ID.
    • Test Status: Passing
  • Schedule jobs with cron:
    • Schedule recurring jobs using cron expressions (uses the system crontab).
    • Test Status: Passing
  • List scheduled cron jobs:
    • List all jobs currently scheduled with crontab.
    • Test Status: Passing
  • Remove cron jobs:
    • Remove a scheduled cron job by its job ID.
    • Test Status: Passing

Slash Command Framework

  • Global slash command registry:
    • Blueprints can register and use slash commands (e.g., /help, /agent, /model).
    • Built-in demo commands: /help, /agent, /model.
    • Test Status: Passing
  • Blueprint Integration:
    • Blueprints can access the global registry and add their own commands.
    • Test Status: Passing

Usage Example (Slash Commands)

from swarm.extensions.blueprint.slash_commands import slash_command_registry

@slash_command_registry.register('/hello')
def hello_command(args):
    return f"Hello, {args}!"

Usage Example (Task Scheduler)

from swarm.extensions.task_scheduler_toolbox import schedule_at_job, list_at_jobs, remove_at_job

job_id = schedule_at_job('/path/to/script.sh', run_time='now + 5 minutes')
jobs = list_at_jobs()
remove_at_job(job_id)

CLI Reference

swarm-cli Usage

Usage: swarm-cli [OPTIONS] COMMAND [ARGS]...

Swarm CLI tool for managing blueprints.

Options:
  --install-completion          Install completion for the current shell.
  --show-completion             Show completion for the current shell, to copy it or customize the installation.
  --help                        Show this message and exit.

Commands:
  install   Install a blueprint by creating a standalone executable using PyInstaller.
  launch    Launch a previously installed blueprint executable.
  list      Lists available blueprints (bundled and user-provided) and/or installed executables.

swarm-api Usage

# (No standalone swarm-api binary was found in dist/; see Docker/API section below for usage.)

Developer Notes

  • System dependencies are mocked in tests for CI and portability.
  • Any toolbox feature not listed as Passing above is considered WIP and may not be stable.
  • Contributions and feedback are welcome!

Quickstart 1: Using swarm-cli Locally (via PyPI)

This is the recommended way to use swarm-cli for managing and running blueprints on your local machine.

Prerequisites:

  • Python 3.10+
  • pip (Python package installer)

Steps:

  1. Install open-swarm from PyPI:

    pip install open-swarm
    

    (Using a virtual environment is recommended: python -m venv .venv && source .venv/bin/activate)

  2. Initial Configuration (First Run):

    • The first time you run a swarm-cli command that requires configuration (like run or config), it will automatically create a default swarm_config.json at ~/.config/swarm/swarm_config.json if one doesn't exist.
    • You must set the required environment variables (like OPENAI_API_KEY) in your shell for the configuration to work. Create a .env file in your working directory or export them:
      export OPENAI_API_KEY="sk-..."
      # Add other keys as needed (GROQ_API_KEY, etc.)
      
    • You can customize the configuration further using swarm-cli config commands (see USERGUIDE.md).
  3. Add a Blueprint:

    • Download or create a blueprint file (e.g., my_blueprint.py). Example blueprints are available in the project repository.
    • Add it using swarm-cli:
      # Example: Adding a downloaded blueprint file
      swarm-cli add ./path/to/downloaded/blueprint_echocraft.py
      
      # Example: Adding a directory containing a blueprint
      swarm-cli add ./my_custom_blueprints/agent_smith --name agent_smith
      
  4. Run the Blueprint:

    • Single Instruction:
      swarm-cli run echocraft --instruction "Hello from CLI!"
      
    • Interactive Mode:
      swarm-cli run echocraft
      # Now you can chat with the blueprint interactively
      
  5. (Optional) Install as Command:

    swarm-cli install echocraft
    # Now run (ensure ~/.local/share/swarm/bin is in your PATH):
    echocraft --instruction "I am a command now!"
    

Quickstart 2: Deploying swarm-api Service (via Docker)

This section covers deploying the API service using Docker.

Option A: Docker Compose (Recommended for Flexibility)

This method uses docker-compose.yaml and is best if you need to customize volumes, environment variables easily, or manage related services (like Redis).

Prerequisites:

Steps:

  1. Clone the Repository: (Needed for docker-compose.yaml and config files)

    git clone https://github.com/matthewhand/open-swarm.git
    cd open-swarm
    
  2. Configure Environment:

    • Copy cp .env.example .env and edit .env with your API keys (e.g., OPENAI_API_KEY, SWARM_API_KEY).
  3. Prepare Blueprints & Config:

    • Place blueprints in ./blueprints.
    • Ensure ./swarm_config.json exists and is configured.
  4. Configure Overrides (Optional):

    • Copy cp docker-compose.override.yaml.example docker-compose.override.yaml.
    • Edit the override file to mount additional volumes, change ports, etc.
  5. Start the Service:

    docker compose up -d
    
  6. Verify API: (Default port 8000)

    • Models: curl http://localhost:8000/v1/models
    • Chat: curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"model": "echocraft", ...}' (Add -H "Authorization: Bearer <key>" if needed).

Option B: Direct docker run (Simpler for Single Container)

This method runs the pre-built image directly from Docker Hub. Good for quick tests or simple deployments without cloning the repo. Customization requires careful use of -v (volume) and -e (environment) flags.

Prerequisites:

Steps:

  1. Prepare Local Files (If Customizing):

    • Create a directory for your blueprints (e.g., ~/my_swarm_blueprints).
    • Create your swarm_config.json file locally (e.g., ~/my_swarm_config.json).
    • Create a .env file locally (e.g., ~/swarm.env) with your API keys (OPENAI_API_KEY, SWARM_API_KEY, etc.).
  2. Run the Container:

    docker run -d \
      --name open-swarm-api \
      -p 8000:8000 \
      --env-file ~/swarm.env \
      -v ~/my_swarm_blueprints:/app/blueprints:ro \
      -v ~/my_swarm_config.json:/app/swarm_config.json:ro \
      -v open_swarm_db:/app/db.sqlite3 \
      --restart unless-stopped \
      mhand79/open-swarm:latest
    
    • -d: Run detached (in background).
    • --name: Assign a name to the container.
    • -p 8000:8000: Map host port 8000 to container port 8000 (adjust if needed).
    • --env-file: Load environment variables from your local file.
    • -v ...:/app/blueprints:ro: Mount your local blueprints directory (read-only). Required if you want to use custom blueprints.
    • -v ...:/app/swarm_config.json:ro: Mount your local config file (read-only). Required for custom LLM/MCP settings.
    • -v open_swarm_db:/app/db.sqlite3: Use a named Docker volume for the database to persist data.
    • --restart unless-stopped: Automatically restart the container unless manually stopped.
    • mhand79/open-swarm:latest: The image name on Docker Hub.
  3. Verify API: (Same as Docker Compose)

    • Models: curl http://localhost:8000/v1/models
    • Chat: curl http://localhost:8000/v1/chat/completions ... (Add -H "Authorization: Bearer <key>" if needed).

Usage Modes Summary

  • swarm-api (via Docker or manage.py runserver): Exposes blueprints as an OpenAI-compatible REST API. Ideal for integrations. Requires SWARM_API_KEY for security in non-local deployments.
  • swarm-cli run (via PyPI install): Executes managed blueprints locally, either with a single instruction or in interactive chat mode. Good for testing and local tasks.
  • swarm-cli install (via PyPI install): Creates standalone command-line executables from managed blueprints.
  • Direct Python Execution (via Git clone): Running uv run python <blueprint_file.py> is mainly for development and testing individual files.

Further Documentation

This README provides a high-level overview and quickstart guides. For more detailed information, please refer to:

  • User Guide (USERGUIDE.md): Detailed instructions on using swarm-cli commands for managing blueprints and configuration locally.
  • Development Guide (DEVELOPMENT.md): Information for contributors and developers, including architecture details, testing strategies, project layout, API details, and advanced topics.
  • Example Blueprints (src/swarm/blueprints/README.md): A list and description of the example blueprints included with the framework, showcasing various features and integration patterns.

Contributing

Contributions are welcome! Please refer to the CONTRIBUTING.md file (if available) or open an issue/pull request on the repository.


License

Open Swarm is provided under the MIT License. Refer to the LICENSE file for full details.


Acknowledgements

This project builds upon concepts and code from the openai-agents library and potentially other open-source projects. Specific acknowledgements can be found in DEVELOPMENT.md or individual source files.

Installation

Claude
Claude
Cursor
Cursor
Windsurf
Windsurf
Cline
Cline
Witsy
Witsy
Spin AI
Spin AI
Run locally with the following command:
Terminal
Add the following config to your client:
JSON
{
  "mcpServers": {
    "git": {
      "env": {},
      "args": [
        "run",
        "--rm"
      ],
      "command": "docker"
    }
  }
}

MCPLink

Seamless access to top MCP servers powering the future of AI integration.

© 2025 MCPLink. All rights reserved.
discordgithubdiscord